A one-pot synthesis of 3-arylglutaric anhydrides by reaction of ketene with aromatic aldehydes and ketones

Hirokazu Matsunaga

Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences

I have found that ketene reacts with aromatic carbonyl compounds 1 to give 3-substituted gulutaric anhydrides 2 or β -lactones 3. Thus, the mechanism, scope and limitation of this new reaction of ketene to produce 2 were studied.

of T The reaction ketene with aromatic carbonyl compounds was conducted under BF₃ etherate catalyst (10 mol%) at $-40 \,^{\circ}\text{C}$, and the representative results are summarized in Table 1. The result indicates that carbonyl compounds without electoron-withdrawing

able 1. Rea	action of k	etene v	with carbony	lcompounds			
R ₁	R ₂ -	=== BF₃ H₂Cl₂, then	•=0 •OEt ₂ -40 °C, 2h urt, 2 h R ₁		O O R ₁	0 R ₂ 3	
entry	R ₁	R ₂		product			
			No.	yield (%)	No.	yield (%)	
1	Н	Н	2 a	31	-	-	
2	OMe	Н	2 b	50	-	-	
3	C	Н	2c	39	-	-	
4	Br	Н	2d	61	-	-	
5	CN	Н	-	-	3e	86	
6	NO_2	Н	-	-	3f	82	
7	Н	Me	2g	40	-	-	
8	OMe	Me	2 h	42	-	-	
9	Me	Me	2i	55	-	-	
10	NO ₂	Me	-	-	3 j	71	

substituent generally produce the corresponding glutaric anhydrides 2, while those with strongly electron-withdrawing substituent produce β -lactones 3.

The mechanism of this new reaction of ketene is illustrated in Scheme 1. The reaction of lactone **3c** with 3 equivalent of ketene under BF₃ etherate catalyst (10 mol%) afforded the glutaric anhydride **2c** in 46% yield, clearly showing the intermediary of β -lactones for 3-substituted glutaric anhydrides **2**.

