Gene Tagging Using the Rice Active Transposon, *nDart1*, and Analyses of Gene Functions

Mika TSUGANE

Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences

We employ an active DNA transposon named nDart1 (<u>non-autonomous</u> <u>DNA-based active rice transposon one</u>), belonging to the hAT superfamily, as gene tagging tools to identify useful rice genes and subsequently performed the mutant analyses by molecular techniques.

(1) Analysis of albino mutant, al101

al101 was isolated from the *nDart1* promoted mutants pool as an albino phenotype mutant and subsequently identified the gene by transposon display (TD) method, based on AFLP method. To unveil *AL101* gene function, we characterized the expression profile in various tissues by RT-PCR. It suggested that *AL101* was expressed not only in leaves, but also in roots. Transient assay using a GFP-fused *AL101* gene indicated that it was localized in chloroplast in a cell. Electron microscopy analysis demonstrated abnormal shape chloroplasts and undeveloped thylakoid membrane in *al101*. Moreover, we attempt to generate next generation of heterogeneous *AL101* transformant lines to obtain the homogeneous for complementation test.

(2) Analysis of elongated culm mutant

A mutant with excessively elongated culms was isolated from *nDart* tagging lines. By performing rough mapping and a subsequent modified TD method, it was revealed that the mutant was caused by a large (~103 kb) genomic deletion. On the basis of rice genomic annotation using RAP-DB, the large deleted region was predicted to contain 87 transposons and 11 genes including negative regulator of gibberellin (GA) signaling. The genomic deletion cleaved LTR transposon, *Houba*. We surveyed truncated sites of 119 *Houba* copies extracted from the rice genomic sequence data to evaluate the truncated site. It indicated that the cleavages were occurred in this site with high frequency.